Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic C-Stability and B-Consistency of Explicit and Implicit Milstein-Type Schemes

Abstract. This paper focuses on two variants of the Milstein scheme, namely the split-step backward Milstein method and a newly proposed projected Milstein scheme, applied to stochastic differential equations which satisfy a global monotonicity condition. In particular, our assumptions include equations with super-linearly growing drift and diffusion coefficient functions and we show that both ...

متن کامل

An Adaptive Euler-maruyama Scheme for Sdes: Convergence and Stability

Abstract. The understanding of adaptive algorithms for SDEs is an open area where many issues related to both convergence and stability (long time behaviour) of algorithms are unresolved. This paper considers a very simple adaptive algorithm, based on controlling only the drift component of a time-step. Both convergence and stability are studied. The primary issue in the convergence analysis is...

متن کامل

Mean square convergence analysis for kernel least mean square algorithm

In this paper, we study the mean square convergence of the kernel least mean square (KLMS). The fundamental energy conservation relation has been established in feature space. Starting from the energy conservation relation, we carry out the mean square convergence analysis and obtain several important theoretical results, including an upper bound on step size that guarantees the mean square con...

متن کامل

Unbiased Estimation with Square Root Convergence for SDE Models

In many settings in which Monte Carlo methods are applied, there may be no known algorithm for exactly generating the random object for which an expectation is to be computed. Frequently, however, one can generate arbitrarily close approximations to the random object. We introduce a simple randomization idea for creating unbiased estimators in such a setting based on a sequence of approximation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BIT Numerical Mathematics

سال: 2016

ISSN: 0006-3835,1572-9125

DOI: 10.1007/s10543-016-0624-y